您现在的位置: 17教育网 >> 中考试卷 >> 山东 >> 聊城市 >> 数学 >> 正文

2017年聊城市中考数学试卷及答案

2017-7-11 编辑:djw001 查看次数: 手机版
1. 64的立方根是(  )
A.4 B.8 C.±4 D.±8
【考点】24:立方根.
【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.
【解答】解:∵4的立方是64,
∴64的立方根是4.
故选A.

2. 在Rt△ABC中,cosA=,那么sinA的值是(  )
A. B. C. D.
【考点】T3:同角三角函数的关系;T5:特殊角的三角函数值.
【分析】利用同角三角函数间的基本关系求出sinA的值即可.
【解答】解:∵Rt△ABC中,cosA=
∴sinA==
故选B

3. 如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是(  )

A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC
【考点】L9:菱形的判定.
【分析】当BE平分∠ABE时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.
【解答】解:当BE平分∠ABE时,四边形DBFE是菱形,
理由:∵DE∥BC,
∴∠DEB=∠EBC,
∵∠EBC=∠EBD,
∴∠EBD=∠DEB,
∴BD=DE,
∵DE∥BC,EF∥AB,
∴四边形DBEF是平行四边形,
∵BD=DE,
∴四边形DBEF是菱形.
其余选项均无法判断四边形DBEF是菱形,
故选D.

4. 纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):


城市

悉尼

纽约

时差/时

+2

﹣13

当北京6月15日23时,悉尼、纽约的时间分别是(  )
A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时
C.6月15日21时;6月15日10时 D.6月15日21时;6月16日12时

【考点】11:正数和负数.
【分析】由统计表得出:悉尼时间比北京时间早2小时,悉尼比北京的时间要早2个小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.
【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,
纽约时间是:6月15日23时﹣13小时=6月15日10时.
故选:A.

5. 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是(  )

A. B. C. D.
【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【解答】解:从正面看易得第一列有3个正方形,第二列有2个正方形,第三列有1个正方形.

故选:C.

6. 如果解关于x的分式方程=1时出现增根,那么m的值为(  )
A.﹣2 B.2 C.4 D.﹣4
【考点】B5:分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
【解答】解:=1,
去分母,方程两边同时乘以x﹣2,得:
m+2x=x﹣2,
由分母可知,分式方程的增根可能是2,
当x=2时,m+4=2﹣2,
m=﹣4,
故选D.

7. 如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是(  )

A.2个 B.3个 C.4个 D.5个
【考点】KW:等腰直角三角形.
【分析】根据等腰直角三角形的判定即可得到结论.
【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,
故选B.


8. 为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克(  )
A.25元 B.28.5元 C.29元 D.34.5元
【考点】W2:加权平均数.
【分析】先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的斤数,即可得出混合后什锦糖的售价.
【解答】解:根据题意得:
(40×5+20×3+15×2)÷(5+3+2)=29(元),
答:混合后什锦糖的售价应为每千克29元.
故选C.

9. 如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的(  )

A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
【考点】R2:旋转的性质.
【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.
【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,
∵CB=CB',
∴∠B=∠BB'C,
又∵∠A'CB'=∠B+∠BB'C,
∴∠A'CB'=2∠B,
又∵∠ACB=∠A'CB',
∴∠ACB=2∠B,故B正确;
∵∠A′B′C=∠B,
∴∠A′B′C=∠BB′C,
∴B′C平分∠BB′A′,故D正确;
故选C.


10. 端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是(  )

A.乙队比甲队提前0.25min到达终点
B.当乙队划行110m时,此时落后甲队15m
C.0.5min后,乙队比甲队每分钟快40m
D.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min
【考点】E6:函数的图象.
【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,根据图象上特殊点的意义即可求出答案.
【解答】解:A、由横坐标看出乙队比甲队提前0.25min到达终点,故A不符合题意;
B、乙AB段的解析式为y=240x﹣40,当y=110时,x=;甲的解析式为y=200x,当x=时,y=125,当乙队划行110m时,此时落后甲队15m,故B不符合题意;
C、乙AB段的解析式为y=240x﹣40乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,故C不符合题意;
D、甲的解析式为y=200x,当x=1.5时,y=300,甲乙同时到达÷(2.25﹣1.5)=266m/min,故D符合题意;
故选:D.

11. 已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为 240° 
【考点】MP:圆锥的计算.
【分析】设圆锥的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到40π=,然后解方程即可.
【解答】解:设圆锥的侧面展开图的圆心角的度数为n°,
根据题意得40π=
解得n=240.
故答案为240°.

12. 如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是  
【考点】X6:列表法与树状图法;AA:根的判别式.
【分析】首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,由此即可解决问题、
【解答】解:m=0,±1,n=0,±1,±2,±3
∴有序整数(m,n)共有:3×7=21(种),
∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,
∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=
故答案为

13. 如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为 22015π. 

【考点】MN:弧长的计算;F8:一次函数图象上点的坐标特征.
【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可得圆的周长,再找出圆半径的规律即可解题.
【解答】解:连接P1O1,P2O2,P3O3…

∵P1 是⊙O2上的点,
∴P1O1=OO1,
∵直线l解析式为y=x,
∴∠P1OO1=45°,
∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,
同理,PnOn垂直于x轴,
圆的周长,
∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,
∴OOn=2n﹣1,
=2πOOn=π2n﹣1=2n﹣2π,
当n=2017时, =22015π.
故答案为 22015π.

14. 为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:

(1)八年级三班共有多少名同学?
(2)条形统计图中,m= 7 ,n= 10 
(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.
【考点】VC:条形统计图;VB:扇形统计图.
【分析】(1)根据植4株的有11人,所占百分比为22%,求出总人数;
(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值,从而补全统计图;
(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数.
【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50(人).

(2)由扇形统计图可知,植树5棵人数占全班人数的14%,
所以n=50×14%=7(人).
m=50﹣(4+18+11+7)=10(人).
故答案是:7;10;

(3)所求扇形圆心角的度数为:360×=72°.

 

[1] [2] 下一页

下载地址一
相关内容
[数学]文章推荐
  • 此栏目下没有推荐试卷
  • 热门推荐
    热门图文
    Copyright · 2011-2017 17jiaoyu.com Inc. All Rights Reserved. 17教育网站 版权所有 备案号:浙ICP备12027545号-2